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Abstract: This report contains papers analyzing various aspects 
of the programming language Euclid: abstract data types, 
isolation of machine dependencies, readability and writability, 
and comparisons of Euclid with Pascal and Modula. This report 
also includes an index to the Euclid Report. 
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If there’s a hole in a' your coats, 
I rede you tent it; 
A child’s among you takin' notes. 
And faith he'll prent it. 

Burns 

Preface: Euclid is a programming language based on Pascal 
intended for writing verifiable system programs. During the fall 
of 1976 at the University of Toronto, Jim Horning, one of the 
Euclid designers, taught CS2124, Topics in Programming Languages. 
The course comprised a number of weeks of lectures on Euclid and 
its development by Jim, followed by critiques of various aspects 
of Euclid presented by students in the course. Those 
presentations formed the bases of the papers in this report. 

The authors of the papers were dealing with a somewhat elusive 
target. Several different versions of the Euclid Report have 
appeared. Successive versions took into account criticisms that 
had been received, including points that were raised by the 
presentations in CS2124. Accordingly, some of the papers 
presented here had to be extensively modified, partially by 
removing significant critical comments, to reflect the current 
state of the Euclid design. Since the final version of the 
Euclid Report appeared after the course was completed, the 
modifications were effected by the editors. We have tried to 
keep the papers as coherent as possible in spite of this 
sometimes radical surgery. No approval by any of the Euclid 
designers, implied or expressed, should be attached to these 
papers. 

At least passing familiarity with both the Pascal and Euclid 
Reports is assumed throughout most of these papers. [Lampson et 
al.77] is considered the authoritive version of the Euclid Report 
(generally referred to herein as nthe Euclid Report" or "the 
Report") , and is pe rvasive throughout these papers. The Pascal 
Report ([ Wirth71 ]) as well as the Euclid references [Guttag et 
al.77], [London et al.77], and [Popek et al.77] should similarly 
be declared pervasive. 
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ABSTRACT DATA TYPES IN EUCLID 

by Ernest Chang, Neil E. Kaden, and W. David Elliott 

Abstract: Euclid provides features that support abstract data 
types, but does not strictly speaking provide a true data 
abstraction mechanism. This paper assesses the data abstraction 
facilities that Euclid does provide, examines the two ways of 
instantiating Euclid modules, and discusses other features of 
modules that the designers of Euclid chose not to include. In 
particular, the paper addresses the issues of (1) enforceable 
separation between abstract definition and representation, (2) 
specifying the relationship between abstract definition and 
representation, (3) type parameters in modules, (4) operator 
extensions, and (5) scope restrictions on identifiers. 

Contents 
1 Introduction 
2 Euclid Modules 

2.1 Modules as Abstraction Mechanisms 
2.2 Two Ways of Instantiating Modules 

3 What Euclid Left Undone 
3.1 Separation of Abstraction and Representation 
3.2 Axiomatic Specification 
3.3 Schemes 
3.4 Operator Extensions 
3.5 On Inheriting Scope 

4 Summary 

1 Introduction 

Euclid was designed 
system software, with the 
differ from Pascal as 
expressly not intended to 
programming languages, 
designers made was in the 

to support the writing of verifiable 
subgoal, as a near-term project, to 
little as possible. Hence Euclid was 
be a research vehicle for new ideas in 

One notable exception the Euclid 
area of data abstraction. 

Virtually all data abstraction mechanisms claim lineage from 
the Simula 67 class [Dahl et al.68]. Descendent data abstraction 
mechanisms have not in general been used long enough for us to 
have much experience with their use, and as a result much of the 
area of data abstraction still belongs to the realm of research. 
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ABSTRACT DATA TYPES IN EUCLID 

Although it was not absolutely necessary for Euclid to 
provide a data abstraction facility, its designers felt that such 
a programming tool would greatly contribute to the ability to 
decompose large programs so that they could be verified with 
existing verification methods. A data abstraction mechanism also 
encourages writing modular and structured programs, and thus 
helps meet other Euclid design goals. ([Horning76] provides an 
excellent summary of the advantages provided by abstraction 
mechanisms, both data and procedural.) 

2 Euclid Modules 

The module in Euclid is an encapsulation mechanism whereby 
the representation of an abstract object and the implementation 
of associated operations can be hidden from the enclosing scope. 
Multiple instances of an abstraction can be realized from the 
definition of a module type by declaring variables of that type. 
Closed scopes, and modules in particular, provide explicit 
control over the visibility of identifiers. Objects, operations, 
and types defined within the module must be explicitly exported 
in order to be used; similarly, values of variables declared 
outside a module must be imported explicitly to be known inside. 

2.1 Modules as Abstraction Mechanisms 

A data type is defined by a set of values and a set of 
operations on those values. An abstract data type is a data type 
with a representation-independent definition. Thus, abstract 
data types permit access by outside routines only to the abstract 
values and operations, and not to any of the underlying 
representation. In this sense, clusters in CLU [liskov et al.77] 
and forms in Alphard [Wulf et al.76] are abstract data types, 
whereas classes in Simula 67 [Dahl et al.68] are not, since all 
data structures in the outermost scope of a class are accessible. 

For -.reasons similar to those for Simula 67 classes, Euclid 
modules are not true abstract data types. Access to identifiers 
within a module is severely restricted by the import and export 
clauses as well as the Euclid scope rules, but access is allowed. 

Euclid modules can be used, however, to implement abstract 
data types. This would require additional programmer discipline, 
unenforceable by the language itself, to ensure that the only 
entities accessible to outside routines are those abstract 
entities being defined. 

2.2 Two Ways of Instantiating Modules 

In Euclid there are two distinct methods of defining 
equivalent objects and their operations. A module type can be 
defined, and instances of the module type declared in the 
enclosing scope. Alternatively, a type definition can be 
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exported from a module, and objects of that type declared in the 
enclosing scope. 

Since no self-respecting abstract data type paper would be 
complete without an example of a stack, we will use the stack 
example to illustrate the two instantiation methods. Consider 
the following implementation of a bounded stack of integers in 
which multiple instances of the module will be instantiated. The 
procedure "Pop" pops the top value from the stack and assigns it 
to the parameter pased. 

type Stack(StackSize: unsignedlnt) = module 
exports(Pop.Push) 
var IntStack: array 1..StackSize of signedlnt 
var StackPtr: 0..StackSize := 0 

procedure Push(X: signedlnt) = 
imports(var IntStack, var StackPtr, StackSize) 
begin 
procedure Overflow = ... end Overflow 
if StackPtr = StackSize then 

Overflow 
else 

StackPtr := StackPtr+1 
IntStack(StackPtr) := X 

end if 
end Push 

procedure Pop(var X: signedlnt) = 
imports (var IntStack, var StackPtr) 
begin 
procedure Underflow = ... end Underflow 
if StackPtr = 0 then 

Underflow 
else 

X := IntStack(StackPtr) 
StackPtr := StackPtr-1 

end if 
end Pop 

end Stack 
—r- 

The user would access the stack by code such as: 

var A,B: Stack (100) 
var Element: signedlnt 
• 9 • 

B.Push(3) ; 
A. Pop (Element) ; 

Note: Because functions cannot have side effects and s,Popn alters 
the stack as well as returning a value, we cannot use the more 
natural form "Element := A.Pop". 

Alternatively, if the module "Stack" exported a type 
definition "Stk", we could have the following module: 
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type Stack = module 
exports(Stk, Pop, Push) 
type Stk(StackSize: unsignedlnt) = record 

var StackPtr: 0..StackSize := 0 
var Body: array 1..StackSize of signedlnt 
end Stk 
*-T 

procedure Push(var IStk: Stk (parameter). 
X: signedlnt) = 

be^in 
procedure Overflow = ... end Overflow 
if IStk.StackPtr = IStk.StackSize then 

Overflow 
else 

IStk.StackPtr := IStk.StackPtr*1 
IStk.Eody(IStk.StackPtr) := X 

end if 
end Push 

procedure Pop (var IStk: Stk (parameter), 
var X: signedlnt) = 

begin 
procedure Underflow = ... end Underflow 
if IStk.StackPtr = 0 then 

Underflow 
else 

X := IStk.Body (IStk.StackPtr) 
IStk.StackPtr := IStk.StackPtr-1 

end if 
end Pop 

end Stack 

Corresponding user code might be: 

var SI: Stack 
var A: SI .Stk (100) 
var E: SI.Stk (299) 
var Element: signedlnt 
• • « 

SI.Push (B,3) 
SI. Pop (A ,Element) 

The differences between these two stack implementations are 
largely stylistic. There are, however, situations in which the 
second instantiation method is more powerful, as shown in the 
following example. 

We would like to define a data type "CharString" that 
contains a procedure "Append" that operates on two strings passed 
as arguments. The first method of instantiation requires that 
the data representation be declared inside the module, and 
requires code such as: 

{instantiates the module} 
{instantiates the object} 
{and another object} 

-4- 



ABSTFACT DATA TYPES IN EUCLID 

type CharString = module 
imports (CharString) 
exports (Append) 
var X: array 1..250 of char 
procedure Append (var S: CharString) = 

imports (X) ... 
end Append 

• • • 

end CharString 

Since "Append" must have access to the representation of the 
character string "X", it must be located inside the module 
"CharString". The requirement that the module import itself, in 
order for "Append" to be able to access the other string, 
however, presents an illegal situation in Euclid. 

Using the second instantiation technique, this problem is 
easily dealt with: 

type CharStringModule = module 
exports (CharString, Append) 
type CharString = record ... end CharString 
procedure Append (var S1,S2: CharString) = 

• • • 

end Append 
• • « 

end CharStringModule 

with user code 

var S: CharStringModule 
var Sa, Sb: S.CharString 
• • • 

S.Append (Sa,Sb) 

The existence of the two instantiation methods adds to the 
complexity of the language, especially since combinations of the 
two methods are possible. The Euclid designers, however, felt 
that there were situations in which each of the two methods 
provided a more natural solution. Instantiating modules avoids 
the bother of re-importing variables of an exported type. And, 
as we saw above, instantiating a type exported from a module 
provides capabilities not provided by simply instantiating the 
module. 

3 What Euclid Left Undone — — — — — — — — ——— ———— 

Although modules were a notable exception to the Euclid 
design guideline of no innovation, somewhat conservative design 
decisions were made concerning modules. This section discusses 
areas where the Euclid designers could have provided further 
module capabilities. 
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3.1 Separation of Abstraction and Representation 

In CLU [Liskov et al.77], Mesa [Geschke et al.77], and 
Alphard [Wulf et al.76], it is possible to write the 
specification of an abstract data type as an entity completely 
distinct from its implementation. In this way, it is possible to 
change representations quite easily and to implement libraries of 
data abstractions and implementations, both of which 
capabilities are highly desirable. 

Euclid, however, provides no syntactic mechanism to ensure 
that this separation is preserved. It is possible in Euclid to 
implement interchangeable modules for the same abstract 
specifications, but the specification would have to be textually 
copied between modules in order to do so. Also, there would be 
no way within the language of ensuring that the textually copied 
specifications remain the same. 

3.2 Axiomatic Specification 

In order to be able to prove that a particular representation 
of an abstract data type does indeed implement the specified data 
abstraction, a language must provide a formal means of specifying 
the relationship between the concrete representation and abstract 
definition. Although Euclid did not originally provide such a 
mechanism, the ill-defined abstraction function now fulfills that 
role, in much the same way that the (somewhat misnamed) rep 
function does in CLU. In Alphard this relationship between 
concrete and abstract is specified in the representation section 
of the form. None of these languages, however, provide an 
adequate means for axiomatic specification [Guttag et al.76]. 

3.3 Schemes 

Types in Euclid are allowed to have formal parameters. Such 
parameters are typed constants, but need not be manifest. It is 
possible to defer fixing the value of a parameter by specifying 
it as any, unknown, or parameter, but it is not possible to pass 
types as parameters to a parameterized type. 

Mitchell and Wegbreit [76] have coined the term "scheme" as a 
generalization of parameterized types in which type values can be 
passed as parameters to the definition mechanism. The 
instantiation of a scheme is a (possibly parameterized) abstract 
data type. Thus, for example, passing type "integer" as a 
parameter to a scheme definition could produce a bounded stack of 
integers data type. This data type can in turn be instantiated 
to produce a particular abstract data object. Such facilities 
exist in both CLU and Alphard, as well as in ELI [Wegbreit74]. 
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3.4 Operator Extensions 

Operator extensibility in Euclid is strictly procedural in 
nature. The generic operators equality and assignment are 
identical for all modules, though to be used they must be 
explicitly exported. A new operator defined on a data type can 
be viewed only as a routine, not as a new infix or prefix 
operator. 

Operators can be redefined in both CLU and Alphard, and even 
equality and assignment can be redefined in CLU. Alphard also 
allows operators to be defined as infix or prefix, which 
contributes to readability. 

3.5 On Inheriting Scope 

The Euclid designers took much of the advice of Wulf and Shaw 
[73] to heart in attacking the problems of aliasing and global 
variables. Unlike the designers of Gypsy [Ambler et al.77], who 
discarded the Algol notion of nested scopes, the Euclid designers 
chose to reinforce Algol-like block structuring with further 
restrictions. In particular, Euclid requires import lists for 
closed scopes, prohibits redeclaration of variables within a 
scope, prohibits "sneak access" to variables via procedure calls, 
and disallows functions with side effects. Euclid allows 
different types of access (e.g., read, write) to be associated 
with an exported or imported variable, as does Alphard. 

Both Euclid and Alphard require that an identifier be passed 
through all intervening scopes in order to be known within an 
inner scope. (Similarly, in Euclid all ancestors of a machine- 
dependent module must be made machine-dependent.) Since Gypsy 
does not permit a hierarchy of routine declarations, there are no 
intervening scopes that need simply pass an identifier along. 

4Sum mary 

Euclid provides features that support abstract data types, 
but does not strictly speaking provide a true data abstraction 
mechanism. With modules, the Euclid designers struck a balance 
between providing abstraction capabilities and ensuring that the 
capabilities provided could be fairly easily implemented. In 
particular, Euclid could have provided further capabilities in 
the areas of enforceable separation between abstract definition 
and representation, specifying the relationship between abstract 
definition and representation, type parameters in modules, 
operator extensions, and scope restrictions on identifiers. 
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ISOLATION OF MACHINE DEPENDENCIES IN EUCLID 

Edward G. Aseltine and Henry Spencer 

Abstract: The programming language Euclid was designed for 
programming such software as operating system kernels, I/O 
routines, and storage allocators. These applications require 
access to low level machine details. Euclid makes a serious 
effort to limit machine dependencies and to isolate them in 
readily identifiable sections of code. This paper surveys the 
machine dependencies of Euclid and assesses the effectiveness of 
the isolation mechanisms. 

Contents 
1 Introduction 
2 Machine-Dependent Modules and their Contents 

2.1 Machine-Dependent Records 
2.2 Variables at Fixed Addresses 
2.3 Machine Code Routine Bodies 
2.4 Data Addresses 
2.5 Extended Characters 
2.6 Specified Representations 

3 Storage Structure 
4 Odds and Ends 

4.1 Character Set 
4.2 Type Converters 
4.3 More Machine Defined Quantities 

5 Summary 

1 Introduction 

If a language is to allow access to the underlying machine, 
knowledge and control of representation become essential. The 
approach taken in Euclid involves language-defined 
representations for the values of certain types given in terms of 
a hypothetical binary machine with implementation-dependent 
parameters. The hypothetical binary machine is somewhat loosely 
defined, but includes virtually all common ("standard") 
architectures. The behavior of programs at the machine 
interfaces, i.e. in sensitive contexts, is then defined in terms 
of these standard representations. 

This paper examines Euclid*s machine-dependent features under 
three categories: those isolated within machine-dependent 
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modules, those relating to the storage structure of the machine, 
and others. Each feature is examined with regard to its 
capabilities, its potential for misuse, and the verification 
problems it poses. 

2 Machine-Dependent Modules and their Contents 

Euclid's main device for the isolation of machine dependency 
is the machine-dependent module. Semantically the machine- 
dependent module is a normal module, except that it is clearly 
marked machine dependent and that it may make use of certain 
machine-dependent features not otherwise permitted. Since the 
machine-dependent module itself is one of these features, any 
module containing one must in turn be machine-dependent. 
However, since variables of types exported from machine-dependent 
modules can only be manipulated by exported routines, these 
routines serve to encapsulate the machine dependencies, and a 
module that imports a machine-dependent module need not itself be 
machine-dependent. 

The features available only within a machine-dependent module 
are machine-dependent records, variables at fixed addresses, 
machine code routine bodies, uses of "StorageUnit.Address", type 
converters involving types with implementation-dependent 
representations, and extended characters of the form $ddd. With 
one exception discussed later, the internal representations of 
values are visible only within machine-dependent modules. 

2.1 Machine-Dependent Records 

A machine-dependent record is a restricted form of record 
that allows specification of the position and size of each 
variable field. Its purpose is to allow clean access to hardware 
defined data structures such as program status words and device 
registers. 

The machine-dependent record does allow the overzealous bit- 
twiddler to try to "improve" on Euclid's packed option. This 
could introduce unnecessary machine dependency into what might 
otherwise be a machine-independent module. The major obstacle to 
such misuse is that a machine-dependent record must be declared 
in a machine-dependent module and must be explicitly exported if 
it is to be known outside that module. In addition, since one 
must also export all operations on such a machine-dependent 
record, any machine dependency is reasonably well confined. 

The machine-dependent record does present a minor 
verification problem in that its structure must be checked to 
ensure that it accurately reflects the hardware-defined data 
structure. At some stage, this check must be done by hand since 
the information needed to check a machine-dependent record 
definition is derived from the hardware specifications. 
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2.2 Variables at Fixed Addresses 

Euclid permits variables within a machine-dependent module to 
be declared at fixed machine addresses. This allows access to 
such things as device registers and interrupt vectors, which have 
locations fixed by the hardware, and also allows linkage to 
machine code routines. 

However, in allowing access to data and code defined external 
to Euclid, variables at fixed addresses also provide the ability 
for Euclid routines to interfere with other software running in 
the same memory, as well as with compiler space allocation. 
Abuse is limited by the requirements that such variables (1) be 
declared only within machine-dependent modules and be explicitly 
exported, (2) be of a type that has a standard representation, 
and (3) not overlap any other Euclid defined variable. 

Variables at fixed locations suffer from the same 
verification problem as machine-dependent records in that 
consistency with the hardware must be verified. Also, 
difficulties are introduced by hardware-caused side effects 
inherent in references to certain locations. Such side effects, 
including triggering of device operations and auto-incrementing, 
occur in many machines. 

2.3 Machine Code Routine Bodies 

Euclid allows a routine declared within a machine-dependent 
module to have a body consisting of a sequence of machine 
instructions rather than Euclid statements. This provides an 
escape from Euclid in cases where a machine-specific operation 
must be performed or especially high efficiency is required. 

Abuse of this feature is restricted by several factors. 
First, access to machine code requires an entire routine 
definition. Second, such routines must be declared in machine- 
dependent modules and explicitly exported. Finally, the machine 
cede representation given in the Euclid Report (a series of 
manifest constants bracketed by the keywords code and end) is 
inconvenient and this discourages its use. (It is in some ways 
unfortunate that the Report permits extension of the code 
syntax.) Verification of machine code routine bodies is generally 
very difficult. 

2.4 Data Addresses 

Euclid makes addresses of arrays of "StorageUnit" available 
in storage allocators. Abuse of this feature is limited by the 
fact that these are numbers (not pointers) and by the restriction 
to machine-dependent modules. Verification is potentially very 
difficult, especially if the storage allocator does inherently 
machine-dependent arithmetic on such numbers. 

-11- 



ISOLATION OF MACHINE DEPENDENCIES IN EUCLID 

2.5 Extended Characters 

The use of the $ddd convention for specifying characters 
provides a way of handling unprintable characters at the cost of 
specifying them in terms of their hardware representation. The 
restriction of this feature to machine-dependent modules controls 
any abuse, and verification should not present major problems. 

2.6 Specified Representations 

In sensitive contexts the Euclid Report requires that a 
type's standard representation be specified, either by the Report 
or explicitly by the implementation. Otherwise, the 
i it pie mentation is free to use any representation, provided it is 
converted to the specified representation in sensitive contexts. 

Abuse of the knowledge of representations is limited by the 
restricted contexts in which the representation is visible. The 
only problem associated with this will be discussed in Section 
4.2. 

3 Storage Structure 

The hypothetical Euclid machine has a basic unit of sto 
allocation called a "StorageUnit". "StorageUnit" is a stan 
"space-filling" type that consists of a fixed-length sequenc 
bits on which no operations are defined. The number of 
within a "StorageUnit" is implementation defined and given by 
pervasive constant "StorageUnit.sizelnBits". 

There are several machine dependencies in Euclid related 
machine's basic storage structure and available in suppos 
machine-independent contexts: the built-in components "size" 
"alignment", the standard component "StorageUnit.sizelnBits", 
standard simple type "AddressType", and the "Index" componen 
collections. "size" and "alignment", which are implic 
declared components of all types, depend on the sto 
representation of the type. "StorageUnit.sizelnEits" speci 
the (machine-dependent) number of bits in a "StorageUn 
"AddressType" is an unsigned subrange of integer, large enoug 
hold a full machine address, i.e., a value returned by 
function "StorageUnit.Address". The function "Index" is 
standard component of collectibn variables, intended for add 
manipulation in zones, that accepts a pointer to the collecti 
object type and returns an integer version of the pointer. T 
features are useful mainly for storage allocation, notably 
programmer defined zones. 
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The possible abuse of these features arises from their being 
machine-dependent quantities that are available without 
restriction. A routine that is not marked as machine-dependent 
may make use of them, thus becoming in reality machine-dependent. 
A solution, albeit a somewhat stringent one, would be to allow 
access to these quantities only within machine-dependent modules. 
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4 Odds and Ends 

The remaining machine dependencies in Euclid include the 
ordering and representation of the character set, type 
converters, and some more machine defined quantities. 

4.1 Character Set 

Because there is no universally accepted standard, Euclid 
deliberately does not specify the character set to be used in its 
implementations. This means that the ordering of variables of 
type "char" is implementation dependent, although use of this 
ordering is not restricted to machine-dependent modules. Thus, 
use of ordering in (1) comparisons of characters, (2) subranges 
of characters, or (3) the "Chr" or "char.Ord" functions will in 
general result in non-portable programs. The programmer can 
assume only 

$a < $b < .. . < $z 
$A < $B < • . . < $Z 
$1 = char.Succ($0) 
• • • 

$9 = char.Succ($8) 

{Despite the best of intentions about the Euclid Report and the 
Euclid Proof Rules defining the same language, the ordering of 
the alphabet and of the decimal digits as characters is specified 
in the Proof Rules, but not in the Report itself.) As mentioned 
above, use of extended characters of the form $ddd is restricted 
to machine-dependent modules. 

4.2 Type Converters 

Euclid provides for breaches of the type system via type 
converters, but attempts to restrict their use by making them 
cumbersome to work with. The source type and target type must 
have the same size, and neither can be parameterized. If either 
type has an implementation-dependent representation, the type 
converter can only appear in a machine-dependent module. A type 
converter may not be referenced in the scope in which it is 
automatically declared, and must be explicitly imported into any 
inner closed scope that references it. 

4.3 More Machine-Defined Quantities 

Euclid provides standard types "unsignedlnt", "signedlnt", 
and "string". The quantities "unsignedlnt.last", 
"signedlnt.first", "signedlnt.last", and "stringMaxLength" are 
implementation-dependent (if not machine-dependent), but their 
use is unrestricted. "unsignedlnt" and "signedlnt" could be 
eliminated in favor of explicit subranges. Removal of 
"stringMaxLength", which is needed as a bound in the definition 
of "string", however, would be very difficult. 
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5_Surnmary 

As a system programming language, Euclid must make low level 
machine features available. For portability, however, these 
machine-dependent features should be isolated and readily 
identifiable. Isolation of machine dependencies has not been 
completely achieved. The machine-dependent module isolates many 
machine-dependent features, but the language leaves a number of 
loopholes that will make transporting and verifying Euclid 
programs difficult. 
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READABILITY AND WRITABILITY IN EUCLID 

Jim des Rivieres and Henry Spencer 

Abstract: Neither readability nor writability of programs were 
major design goals of Euclid, yet both are obviously important 
considerations in determining how effectively the language can be 
used. This paper considers the influence of various Euclid 
features on readability and writability. 

Introduction 

Euclid's principal goal of verifiability has a major impact 
on the desired attributes of readability and writability. To 
further verification, more of the information needed for 
understanding and maintenance is made explicit in Euclid 
programs; this information should also greatly improve 
readability. On the ether hand, the Euclid designers expected to 
sacrifice some writability to improve verifiability, since more 
program text is required to make this information explicit. 

This paper discusses the influence of individual Euclid 
features on readability and writability. We do not attempt to 
define these notions formally, since the boundary is somewhat 
fuzzy. (Hew exactly does one classify features which ease the 
writing of readable code?) We concentrate on those aspects that 
are comparatively new in Euclid, and avoid discussion of such 
questions as why the case statement is superior to the computed 
goto. 

The order of discussion and the numbering of sections 
correspond to those of the Euclid Report. 

3 Notationc Terminology, and Vocabulary 

3. 1 Vocabulary 

Long identifiers containing breaks, such as those allowed by 
Euclid, can significantly increase readability. Euclid 
eliminates a possible source of errors in such identifiers by 
ignoring breaks when checking for redeclaration, thereby 

-15- 



READABILITY AND WRITABILITY IN EUCLID 

prohibiting the use of identifiers that are equivalent except for 
breaks. 

T here 
lowe r to 
chara cter 
case to f 
or 1 ower 
vccab ular 
langu age 
writt e n. 

are some unresolved points when using the change from 
upper case to indicate a break. It will probably be a 
istic (i.e., frequently recurrent) error of upper/lower 
orget whether the first letter of an identifier is upper 

case. While the Report carefully specifies that the 
y is not the character set, it would still be useful for 
standardization to state in what case keywords should be 

The comment convention of 
the often cited problems of 
Bracketing comment symbols hav 
"runaway comments" if the right 
Also, their writability is infe 
of-line convention for short c 
closing bracket. For large b 
improve if the comment delimiters 

Euclid is quite orthodox and has 
bracketing comment symbols, 

e the writability problem of 
comment delimiter is omitted, 
rior to that of a symbol-to-end- 
cmments since they require a 
locks of text, readability would 
were more conspicuous. 

3.3 Lexical Structure 

Automatic semicolon insertion should make Euclid programs 
easier to write by eliminating the characteristic error of 
omitting trailing semicolons. 

The end brackets for all control constructs, blocks, records, 
and modules improve readability by making the program structure 
mere explicit, and as such should be less error-prone. end 
brackets fer control constructs similarly improve writability by 
eliminating special cases when adding or deleting statements. 

4 Identifiers, Numbers, and Strings 

The representation for octal and hexadecimal constants is 
good except for a characteristic writability error with 
hexadecimal numbers. Because the first digit of a hexadecimal 
number must be a decimal digit, "E0#16" must actually be written 
"CEO#16". 

The character constant convention is poor in two respects. 
Readability is impaired by the density of "$", which overpowers 
most other characters; a low-density character like "'" would 
have been preferable. There is also a writability problem due to 
the unusual, unfamiliar convention. 

5_Manifest Constants 

the availability of expressions as manifest c 
improves readability by making the relationship between c 
explicit and by reducing the need for extra va 
Expressions as manifest constants also improve writabi 

onst ants 
onstants 
riables. 
lity by 
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reducing the need for hand calculations, and improve both 
readability and writability by facilitating parameterization of 
types. 

6 Data Types 

Free variables are strictly prohibited from type declarations 
by the Euclid Report. There are, however, situations where free 
variables are absolutely necessary, such as collection names in 
the declaration of pointer types. This is a distinct problem 
with at least the wording of the Report, and is being fixed. 

The built-in facilities for getting at attributes of types, 
e.g. "unsignedlnt.last" and the "IndexType" component of array 
types, make Euclid programs easier to read by providing a 
consistent way of referring to attributes for related types. The 
rule for when to capitalize built-in components, however, seems 
capricious at best. Built-in facilities also make Euclid 
programs easier to write by providing facilities that otherwise 
would have to be constructed by the user, in some cases clumsily. 

The "type-of" component of variables and constants is named 
"itsType" instead of the preferable ’’Type" because type is a 
reserved word. 

6.1 Simple Types 

By restricting the programmer to more straight-forward 
constructs, the absence of type and routine variables is a great 
asset for understandability. 

6.1.1 Enumerated Types 

The uniformity of reference to "T.Succ(X)" and "T.Pred(X)" 
must be weighed against the clutter introduced by requiring the 
type names. 

6.2.1 Array Types 

Mu Iti-dimensional arrays must be formed by having arrays of 
arrays. Although the decision to eliminate multidimensional 
arrays is understandable given the types of programs for which 
Euclid was designed, their absence may have minor negative 
effects on both readability and writability. 

6.2.2 Record Types 

Allowing constants in records allows relevant information to 
be grouped together, thus improving readability. 
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There are some possible characteristic errors associated with 
record variants. A minor one is writing else instead of 
otherwise. Two more serious ones, arising from not really 
thinking of variants as parameterized types, are forgetting to 
include the variant tag in the parameter list and forgetting- to 
give a parameter list when declaring variables of type 11T (any) ". 

6.2.3 Module Types 

The module serves as an encapsulation mechanism, and as such 
potentially offers great gains in readability. There are, 
however, some problems with the two distinct ways of 
instantiating modules (as discussed in the "Abstract Data Types 
in Euclid" paper): modules exporting routines and types but 
having no local variables exported, and modules exporting no 
types but exporting variable components. The two different 
usages, and the unfortunate possibility of combinations, hurt 
readability by increasing the complexity of the language. 

The explicit flagging of machine-dependent modules makes 
machine dependencies more clearly identifiable, and thus 
increases readability. (A discussion of how easily identifiable 
the different machine dependent features are appears in the 
"Isolation of Machine Dependencies in Euclid" paper.) 

6.2.4 Machine-dependent Records 

The parentheses surrounding the at clause are a good, 
readable way of introducing a third entity into the Pascal-style 
declarat ion. 

6.2.5 Set Types 

xor and * seem to be unnatural choices for set opeator 
symbols,, 

6.2.6 Pointer and Collection Types 

The requirement of declaring 
writing in simple cases of dynamic 
facilities for storage allocation 
allocation routines easier to write 
defined storage allocation rout 
routines to write. The resulti 
understandable due to the standard 
to construct such routines. 

a collection will mean more 
variable allocation. Explicit 
, however, should make storage 
in general, although user- 

ines will still be complex 
ng code should be more 
set off primitives with which 

The use of collections improves readability by allowing the 
user tc group related dynamic variables, e.g., collections named 
"EritishCitizens" and "CanadianCitizens". 
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The availability of a built-in reference count mechanism 
improves both readability and writability by obviating explicit 
deallocation where only simple reference counting is needed. 

6.3 Parameterized Types 

The use of parameterized types improves writability by 
eliminating the need for writing repetitive code to handle 
similar functions for different data types. Parameterized types 
thus solve the Pascal problem of needing separate procedures to 
perform the same function for arrays of different ranges 
[Habermann73]. The strong typing of parameters helps control 
possible abuse of parameterized types. 

6.4 Type Compatibility 

The type compatibility rules given in the Report, although 
precise, are hard to understand. The Report should perhaps 
include a simpler overview discussion such as that in [Popek et 
al.77] to explain the purpose of the rules. 

7 Declarations and Denotations of Constants and Variables 

For arguments similar to those for keyword versus positional 
parameters, the syntax of structured constants is hard to read 
and error-prone to write, especially for constants of record 
types. Also, there is no way to specify that the length of an 
array constant is to be taken from the length of the value list. 

The initialization of variables in declarations makes 
programs mere readable as well as writable by putting relevant 
information together. 

Bindings improve readability by binding identifiers to the 
relevant data object, thus improving clarity and reducing 
clutter. When used like the Pascal with statement, bindings also 
improve writability by permitting abbreviation. The lack of 
uniformity between the single binding syntax and binding-list 
syntax hurts writability (specifically modifiability). 

7.3 Scope Rules and Importing 

The complexity of the scope rules will cause problems in 
writing Euclid programs. 

In general, imports lists improve readability at the expense 
of writability. Forcing the user to specify all imported 
variables makes interfaces explicit, but requires extra code. If 
"X" imports MY" and "Y" imports "Z", "X" must also import "Z". 
This will make the program harder to modify, as well as adding to 
the length of the imports list. Since imported items are 
constant by default, the clause »imports (var X,Y)” imports "Y" 
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as a constant, which is not what programmers used to Pascal 
declarations would expect, 

£fi£vasive seems a mixed blessing. Its use can improve 
readability by reducing imports lists to the important items. 
The inability to override a pervasive declaration in an inner 
scope, however, makes it impossible to write an inner scope 
independently of its enclosing scope. 

8 Expressions 

The use of operator precedences as well as the particular 
levels should reduce high-persistence APL-like precedence errors 
(see [Gannon and Horning751), help eliminate parentheses, and 
generally contribute to reading and writing clarity. 

8.1.3 Relational Operators 

The ability to test explicitly whether a value is within 
range with the in operator is a definite asset to both 
readability and writability. 

8.1.4 Other Operators 

The logical implication ("->") operator makes complex 
assertions both more readable and more writable. 

The conditional and and or operations can eliminate nested if 
statements, and thus contribute to both reading and writing 
clarity. For programmers unfamiliar with them, however, they 
initially reduce readability since they are not as explicit about 
control flew as are nested if*s. 

9 Statements 
—-— — ——"*r 

The inability to determine from a call which arguments are 
variable parameters, and hence subject to modification, hurts 
readability. 

9.1.3 Escape Statements 

Proper use of escape statements should generally make 
programs both easier to read and easier to write by providing 
more natural specification of program control. Escapes provide 
the potential for misuse, however, if the user is too tricky. 

The when clause improves both readability and writability by 
providing a clearer notation for escape conditions. 
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9.1.4 Assert Statements 

Although they may cause run-time checks, assertions are a 
major aid to readability by concisely describing the meaning of a 
routine. The ability to make the body of an assertion a comment 
permits using non-Euclid constructs in assertions, helping both 
readability and writability by allowing more descriptive 
assertions. 

9.2.1 Compound Statements and Elocks 

Allowing declarations in compound statements can increase 
both readability and writability by putting declarations closer 
tc their use. This also allows more precise use of bindings. 

9.2.2 Conditional Statements 

The provision of elseif can reduce deep nesting of if*s, and 
as such improves both readability and writability. It does 
introduce the characteristic error of accidentally putting a 
blank between the "e" and the "i". 

As with variant records, there is a possible characteristic 
error of writing else rather than otherwise in the case 
st atement. 

9.2.3 Repetitive Statements 

The ability provided by escape statements to write a loop 
executed "n and a half" times is an asset for both readability 
and writability, as mentioned above. Generators similarly 
provide more natural specification of program control. 

10 £ 11 Routines 

The use of positional, instead of keyword, parameters hurts 
readability somewhat and could be more error-prone. On the other 
hand, positional parameters are less verbose. The use of 
parameter should make calls easier to read. 

The elimination of side effects in functions may make some 
functions less natural to write, but is a big help for 
understandability. 

If a routine has a forward definition, the parameter and 
import specifications must be placed in the forward definition 
itself, not where the routine is actually defined. Thus, 
information about a routine can be greatly separated, hampering 
readability. 
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EUCLID AND PASCAL 

Ted Venema and Jim des Rivieres 

Abstract: Euclid was intended for writing system programs that 
cculd be verifiable by state-of-the-art verification methods. 
Since verification was not an explicit goal in the design of 
Pascal, it is not surprising that this gave rise to differences 
between the two languages. The Euclid designers intended to 
change Pascal only where it fell short of this goal. This paper 
examines differences in the two languages in the light of this 
objective. These differences are roughly grouped under the 
headings verification, system programming, and user-oriented 
changes. 

Contents 
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1.1 Aliasing 
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1.1.1 Open and Closed Scopes 
1.1.2 Elimination of Aliasing due to 
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2.1 Machine Dependencies 
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3.3 Constants 
3.4 Variable Bindings 
3.5 Operator Precedence 
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1 Verification 

The basic method for verifying Euclid programs is an 
inductive assertion one similar to that used for Pascal [Hoare 
and Wirth73]. Those features present in both Euclid and Pascal, 
tut different in Euclid due to the verification requirement, will 
be the focus of attention in this paper. Constructs added to 
Euclid specifically for verification will not be discussed, 
since they in general have no Pascal counterpart. 

1.1 Aliasing 

Aliasing is the use of two names to refer to the same 
variable. Aliasing occurs within most block structured languages 
and is illustrated in the following Pascal example: 

var I:integer; 
procedure P(var J:integer); 

begin 
J:=2*I 
end; 

l: = 2; 
P(I) 

Within t 
variable. 

For 
to prove 
of the pr 
In partic 
as specif 
s ynt actic 
in "Q" 
verifier 
example 
p aram eter 
during th 

1.1.1 Ope 

refer to the same 

might be required 
I ". Examination 

i inde ed the case. 

he invocation of "P" , both "IH and "J" 

the example given above, the verifier 
that "P" does not affect the value of 1,1 
ocedure "P” would indicate that this is 
ular, an application simply of the axiom of assignment 
ied by Hoare [69] shows that for any postcondition "Q" , 
ally substituting n2*In for every free occurrence of "J" 
places no restrictions on "I", thereby allowing the 
to assume that "I" is unchanged. However, in the 
if the formal parameter "J" is bound to the actual 
"I", then the assertion that "I" 

e execution of "P" is false. 
remains unchanged 

n and Closed Scopes 

The elimination of aliasing caused several major changes from 
Pascal. The first of these is the distinction between open and 
closed scopes, together with associated scoping rules for each. 
Pervasive constants are available in all enclosed scopes, open or 
closed. Open scopes are begin end blocks, component statements 
of if statements, elements of case statements, and loop or for 
statements. When an open scope is entered, the identifiers 
available in the immediately enclosing scope are automatically 
available in the open scope. 

W hen 
varia ble s 

a closed scope (routine or module) is entered, no 
are automatically available from the enclosing scopes; 
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bles must be explicitly imported. Conceptually, at the time 
routine call or module instantiation, there is an "extended 
eter list" composed of the union of the actual parameters, 
ted variables and constants, and pervasive constants. A 
ne call is legal only if the variables in the extended 
eter list do not overlap. This reguires that no two 
ifiers of variables in the extended parameter list be the 

Recoding the earlier example in Euclid, we have 

var I:signedInt 
procedure P(var J:signedInt) = 

imports (var I) 
begin 
J:=2*I 
end 

I: = 2 
P (I) 

The procedure invocation "P(I)" is illegal since the extended 
parameter list (1,1) contains duplicate elements. 

1.1.2 Elimination of Aliasing due to Overlapping Variables 

Unfortunately, scoping restrictions are not sufficient to 
resolve all occurrences of aliasing. Consider, for example, the 
following Euclid program: 

procedure Assign(var Left,Pight:signedInt) = 
begin 
Left:=Right 
end 

Tc avoid aliasing, any call to "Assign" where "Left" and "Right" 
are bound to the same or overlapping variables must be 
prohibited. In many cases the compiler can check this. However, 
if "A" is an array, "Assign (A (I),A (J))" is only legal when 
"I" ^ "J", which is not generally determinable at compile time. 
Euclid reguires that the compiler generate a legality assertion 
for the verifier if it is unable to determine that "I" f "J" for 
all executions of the call. This assertion will be compiled into 
code if the checked option is specified. 

The aliasing problem in 
parameters by reference rather 
value, the parameter would be 
no aliasing problem exists. 

closed scopes arises from passing 
than by value. If passed by 
constant in the closed scope, and 

A collection is a group of variables of the same type. Just 
as an index value uniguely determines an element of an array, so 
a pointer into a collection uniquely determines a variable of the 
collection. Ey requiring all dynamic variables to be allocated 
as part of a collection and by enforcing the collection/array 
analogy, Euclid severely constrains the use of pointers and 
hopefully avoids the usual verification pitfalls associated with 
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them. As with arrays, there remain aliasing problems that cannot 
be resolved at compile time. 

1.2 Pascal Verification Holes 

Pascal record variants are not type-safe in that the type of 
the variant for a particular record instance is not known at 
ccmpile-time. Pascal allows assignment to a record variant 
without checking whether that assignment is valid. For example: 

type Person = 
record 

ftame:alfa; 
case Sex:(Male,Female) of 

Male:(Weight:integer); 
Female: (Height:integer) ; 

end; 
var Mary:Person; 
Mary.Sex := Female; 
Mary.Weight := 180 

The second assignment is illegal since the current record variant 
is female. Although in this case a smart compiler could spot the 
error, this is not generally possible at compile-time. Euclid 
eliminates this problem by allowing assignment to a variant only 
within a discriminating case statement. A similar record 
structure in Euclid would be: 

type Person(Sex: (Male,Female)) = 
var Name:string 
case Sex of 

Male => var Weight:unsignedlnt end Male 
Female => var Height:unsignedlnt end Female 

end Person 
var Mary:Person(Female) 
with X bound to Mary case Sex of 

Male => ... 
Female => X.Height:=180 

end case 

The compiler can easily ensure that illegal assignments cannot 
occur. 

Here, as elsewhere in Euclid, a design decision was made to 
ensure that only lccal information about the program was needed 
for verification. Similarly, the compiler need only check each 
closed scope boundary to ensure that proper control over 
visibility of identifiers is maintained. 

Another aspect of Pascal that presents verification problems 
is procedure parameters. For example, the following is legal in 
Pascal: 
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procedure P{procedure Q; Which:integer); 
begin 
if Which = 1 then 

0(X,Y) 
else 

' Q(X) 
end 

Guaranteeing the correctness of this program involves checking 
that for all calls to "P", the procedure "Q" has the appropriate 
number of parameters for the corresponding run-time value of 
"Which”. Euclid avoids this problem by not allowing procedures 
tc be passed as parameters. For similar reasons, types are 
disallowed as parameters. Both routine and type parameters were 
felt to be difficult constructs that provided little advantage at 
a high cost in verification. Some of the uses of routine and 
type parameters are subsumed by modules, generators, and zones. 

1.3 Functions and Side Effects 

Pascal recommends against the use of functions that have side 
effects, but does allow them. Although it is possible to verify 
programs that allow functions (and hence expressions) to have 
side effects, this becomes much more difficult. In particular, 
the axiom of assignment specified by Hoare [Hoare69] must be made 
much more complicated. As a result, side effects in functions 
were disallowed in Euclid. 

While disallowing side effects in functions makes Euclid 
programs easier to verify, there are still cases where such side 
effects seem necessary for a "natural" solution. For example, 

while Searching do 
begin 
S 
end 

where "Searching" is a function that returns a Boolean value 
indicating whether or not elements in the series remain. If the 
value is true, "Searching" has the side effect of setting a 
global variable to the value for the next element. 

A possible solution that avoids side effects is tc factor 
the function into two parts: a Boolean function "Anymore" that 
determines if there are any more elements and a procedure 
"Getnext" that gets 
searching involves 
determining if there 

the next element. Since m many cases 
first attempting to get an entry and then 
are any left, this would be coded as: 
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Getnext 
while Anymore do 

begin 
S 
Getnext 
end 

But repeating the call to "Getnext” is undesirable. This can be 
avoided by using, instead of a while or a repeat until 
statement, a looping construct where the exit statement can be 
placed anywhere in the loop. As a result, Euclid has discarded 
the Pascal while and repeat until statements in favour of a loop 
with possibly multiple exit statements. This example in Euclid 
then becomes 

loop) 
Getnext 
exit when not Anymore 
S 
end loop 

With this looping construct, 
functions with side effects in 
only tolerable, but preferable 
be the easiest to understand of 
Euclid also provides generators 

the restriction of not allowing 
cases such as this becomes not 
since the Euclid version seems to 
the three versions presented, 

for more general iteration. 

2 System Programming 

2.1 Machine-Dependencies 

Since Euclid was designed for programming such systems as 
operating system kernels, it was necessary to provide access to 
the underlying machine. Pascal does not allow such access. The 
approach to machine-dependent facilities in Euclid reflects the 
widely held opinion that machine dependencies should be the 
exception to the rule. The unnecessary use of machine-dependent 
facilities in Euclid is discouraged, principally by cumbersome 
mechanisms, and the necessary uses are in general isolated and 
readily identifiable. The "Isolation of Machine Dependencies in 
Euclid" paper provides a more complete discussion of the machine 
dependencies of Euclid and assesses the effectiveness of the 
isolation mechanisms. 

2.1.1 Standard Representation of Values 

In both Pascal and Euclid programs, the internal 
representation of values is generally irrelevant. The system 
software for which Euclid was designed, such as operating system 
kernels, however, requires access to the underlying machine. 
Euclid defines the representations of values of certain types in 
terms of a hypothetical binary machine with implementation- 
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dependent parameters, and then defines the bahavior of programs 
in sensitive contexts in terms of these standard representations. 

The only types given language-defined standard 
representations are those that have a "natural” implementation on 
the hypothetical machine. These are all enumerated types 
(including "Boolean" and "char"), subrange types with a non¬ 
negative first value (including "unsignedlnt"), sets of 
enumerated or subrange types, "StorageUnit", and all unpacked 
array types. 

The user can define the internal representation of records by 
using machine-dependent records. These records can have both 
constant and variable components. Variable components must be 
given a starting displacement in "StorageUnit"s and a range of 
bits, and their type must have a standard representation. 
Constant components can have neither size nor position specified. 

2.1.2 Fixed Address Variables 

Euclid allows a variable to be declared at an absolute 
machine address provided the type of the variable has a standard 
representation. The address must 
integer. For example. 

be a manifest non-negative 

var Psw (at 177776#8) : ProgramStatusWord 

declares a variable at memory location 177776 (octal). 

2.1.3 Machine Language Code 
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sentations. 

s instruction set is available in a 
crm. Instead of a procedure or 
machine language instructions may be 
is minimal: a list of manifest 
placed between the keywords code and 
stants is implementation defined, 
by which Euclid programs can access 
invoke a non-Euclid routine. The 

chine coded routines must have known 

2.2 Type Converters 

Type converters allow breaches of the type system so that a 
value of one type can be used as a value of some other type. 
Both types must have the same size values, and both must have 
standard or implementation defined representations. 
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2.3 Dynamic Storage Allocation 

Pascal provides dynamic storage allocation, but does not 
allow the user to define his own allocation scheme. Euclid 
provides programmer control over storage allocation via zones. 
The zone has three special components: an internal variable from 
which the space is obtained, an "Allocate" procedure, and a 
"reallocate" procedure. 

The zone deals only with blocks of "StorageUnit"s and is not 
concerned with the types of the objects being allocated. The 
user can define collections that are allocated in a particular 
zone. The collection components "New" and "Free" provide this 
interface. 

Collections are allowed whose storage deallocation is handled 
simply by reference counts. reference counted collections are 
straight-forward to implement due to the distinction between 
"New"/"Free" and "Allocate"/"Deallocate". 

Although the attempt to provide the user with dynamic storage 
allocation facilities is commendable, there are several 
unsatisfactory aspects of the dynamic allocation mechanism in 
Euclid: 

(1) It is impossible to define a zone that can periodically 
compact its heap since there are pointers into it that 
are only known outside the zone. 

(2) A collection is allocated in a zone, and a zone must 
have another collection as one of its components. 
Fortunately, if the zone is not specified for a 
collection, a standard system zone is supplied. In most 
cases, the zone never need invoke "New" or "Free" for 
its collection. Rather, the collection's "Index" 
component will be used to allocate pieces of a declared 
array variable. 

(3) Because "New" and 
storage required for 
by adding referenc 
check for insufficie 

"Free" can 
a value of 

e counts), 
nt storage. 

increase 
the object 
it may be 

the amount of 
type (e.g., 

impossible to 

2.4 Minor Changes 

(1) Input/output facilities are not present, since Euclid is 
intended as a tool for constructing such system 
software. However, I/O primitives similar to those of 
Pascal could be constructed using machine-dependent 
modules. The differences would be as follows: 

(a) A module "M" could define I/O for only a 
single, possibly parameterized type. 
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(b) The Pascal procedures "Get", "Put", etc. 
would have to be referenced as "M.Get", 
"M .Put", etc. 

(c) The Pascal procedures "Read" and "Write" take 
a variable number of arguments of various 
types. In Euclid several simple procedures 
such as "M.ReadChar", "M,Writelnt", and 
"M.WriteString" would have to be used. 

(2) Only integer arithmetic is supplied in Euclid. 

(3) Inline expansion of Euclid routines can be indicated. 

(4) Nonprinting characters are allowed in Euclid string 
constants. 

(5) Hexadecimal and octal numbers are allowed in Euclid. 

(6) Pascal's abbreviated syntax for multi-dimensional arrays 
is not provided in Euclid. Although only singly 
dimensioned arrays are allowed in Euclid, the object 
type of an array can in turn be an array type, thus 
providing an arbitrary number of dimensions. 

3 User-oriented Changes 

3.1 Data Types 

The powerful data types and associated type-checking rules of 
Pascal form the basis of Euclid's data type facilities, although 
Euclid provides for much stronger type^checking. All of the data 
structuring methods of Pascal, with the exception of files, are 
provided in Euclid. What follows is a discussion of some of the 
enhancements made to Pascal's data type definition mechanisms. 

3. 1.1 Record and Module Types 

Pascal records have been generalized into Euclid records and 
modules. Euclid's records may contain both constant and variable 
components. Variable components may have an initial value 
clause. 

Perhaps the most significant extension made to Pascal is the 
module structure, which can also include type, procedure, and 
function components. Euclid modules are discussed in some detail 
in the "Abstract Data Types in Euclid" paper. 

3.1.2 Parameterized Types 

Perhaps the most freguently cited deficiency of Pascal is 
caused by the requirements that the index types for formal and 
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actual array parameters be the same and that all 
compile-time evaluable. This makes it impossible, 
to have a general sorting or matrix multiplication 
situation is rectified in Euclid by allowing 
subrange types to be given by runtime constants, 
such a subrange for an index type would have its 
computed upon entry to the scope. 

array bounds be 
for example, 

routine. This 
the bounds of 

An array with 
array bounds 

More generally, types in Euclid are allowed to have formal 
parameters. Such parameters are typed constants, but need not be 
manifest constants. Thus, fixed-length vectors of integers could 
be defined as follows: 

type IntVector(Length:unsignedlnt) 
= array 1..Length of signedlnt 

A 10 element vector could then be declared 

var Vec:IntVector(10) 

By using parameterized types, one can write a routine that 
accepts or returns data objects containing variable-sized arrays, 
without losing the advantages of strong type checking. 

3.1.3 Standard Type Components 

Euclid automatically defines several built-in components for 
each type declared. These components are inherited by variables 
and constants of the type. For example, all enumerated and 
subrange types "T" have components "T.first", "T.last", "T.Succ", 
"T.Pred", and "T.Ord"; all array types have "IndexType" and 
"ComponentType" components. The parameters of a parameterized 
type are alsc components. Thus, type dependencies can be 
indicated without having to introduce extraneous type 
identifiers. 

by 
For example, suppose we have a Pascal array type "A" defined 

type A = arrayr 1 .. 100 ] of T; 

If we wished 
structure as a 

to declare a variable 
component of array "A", we 

"X" that has the same 
would have to write 

var X : T; 

From this declaration of "X" there is no explicit connection 
between "X" and the array type "A". Euclid allows this relation 
tc be stated explicitly, for example 

type A = array 1..100 of signedlnt 
var X : A.ComponentType 
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Similarly if we wanted a variable "I" that took the values of the 
indices of "A” together with one more value at the end, we could 
write 

var I : A.IndexType.first .. A.IndexType.last + 1 

A type’s components are automatically inherited by its 
variables and constants. Variables are also given a special 
component, "itsType", which is the type of that variable. This 
provides, among other things, a capability similar to the PL/I 
like attribute [ANSI76]. Thus 

var Y : X.itsType 

declares "Y" to be a variable of the same type as "X". 

3.2 Control Structures 

All Euclid control structures have explicit end brackets, 
which eliminates the dangling-else problem of Pascal. The elseif 
construct serves to counter the plethora of end brackets required 
to terminate nested conditional statements. 

Pascal’s while and repeat structures are replaced by a loop 
structure with conditional or unconditional exit statements that 
can appear anywhere. The for statement is also enhanced to 
provide more general iteration control such as iterating through 
a set. 

The goto and label of Pascal were eliminated in Euclid as 
being undisciplined constructs that presented severe verification 
problems. The new loop structure, however, together with escape 
statements, provides a natural way of expressing many of the exit 
conditions that resulted in the use of gotos in Pascal (see 
Section 1.3 above). 

3.3 Constants 

Constant definitions in Euclid are more general than those of 
Pascal in three ways: 

(1) Constants need not be manifest. 
(2) Constants can be defined by expressions, whereas Pascal 

only allows optionally signed values. 
(3) Constants of structured types can be defined, whereas 

Pascal constants are restricted to simple types. 

Both the procedural and the declarative aspects of Euclid 
programs benefit considerably from these extensions. 

One dangerous aspect of structured constant definitions is 
the purely positional notation used to list the components: the 
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reliance cn ordering is both error prone and inconsistent with 
the named components of records. The constant definition in 

type Complexlnt 
= record var Re,Im:signedlnt end Complexlnt 

const Z:Complexlnt := (0,5) 

would be better expressed as 

const Z:Complexlnt := (Re:=0, Im:=5) 

3.4 Variable Eindings 

Euclid allows 
existing variable, 
declared by 

an identifier to be bound to 
For example, the fifth element of 

part of an 
the array 

var A : array 1. . 100 of T 

cculd be renamed as "X" by the variable binding 

bind var X to A(5) 

Disallowing the use of the renamed variable within the 
the binding prevents this feature from introducing 
problems. Variable bindings provide a more flexible and 

example. 

scope of 
alia sing 
readable 

due to alternative to the Pascal with statement. For 
naming conflicts, a with cannot be used to open two record 
variables cf the same type. 

3.5 Operator Precedence 

The Pascal operators are (in order of increasing binding 
strength, with equal priority operators on the same line): 

=, <>, <, <=, >, >=, in 
unary +, binary +, unary -, binary -, or 
*, /, div, mod, and 
not 

In hie assessment of Pascal 
precedence level as "ill-advised'* 
out the logical operators and 
precedence levels are: 

Wirth describes the 
[Wirth75]. Euclid 
the unary operators 

choice of 
separates 
, and the 

-> 

or 
and 
not 
=, not =, <, <=, >, >=, in, not in 
binary ♦, binary -, xor 
* • div, mod 
unary - 
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This more natural classification allows one to write, for 
example, 

A<0 or A>N 

without the parentheses required in Pascal, i.e. 

(A<0) or (A>N) 

In addition to rearranging the precedences, Euclid provides 
conditional logical and, or, and n->” operations that evaluate 
their right operand only when necessary. This obviates some 
nesting of conditionals. In Pascal, proper programs must not 
rely on the implementation evaluation strategy. 
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Abstract: Both Euclid and Modula are programming languages based 
on Pascal and intended for writing system software such as 
operating system kernels. The further goals of each language, 
however, resulted in two rather different languages. Modula is 
meant to be used in multiprogramming systems primarily on mini¬ 
computers; thus Modula aims for very small run-time support and 
efficient compilation by a small compiler. Many of the Euclid 
language design decisions, on the other hand, were influenced by 
the authors’ overriding concern for the ability to verify Euclid 
programs. This paper discusses design goals of the two languages 
and the language differences that resulted. After contrasting 
individual features of the two languages, modules and 
multiprogramming are discussed in more detail. 
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1 Overview of Modula 

The programming language Modula was designed primarily for 
programming stand-alone systems for operating existing machines 
and their peripherals. ([Wirth77a, 77b, and 77c] provide a 
commendably readable and informative description of the language 
itself and the rationale behind its design.) Such systems reguire 
two additional sets of features not found in general purpose 
programming languages in the past: features for multiprogramming 
and features for operating peripheral devices. Such facilities 
are inherently machine- and configuration-dependent, and as such 
are not easily described abstractly. Modula attempts to 
encapsulate such machine dependencies in moduleg. from whence its 
name. 

The Modula project was started to gain experience in the 
field of multiprogramming and device handling, with the intent of 
establishing a discipline for effective and reliable 
multiprogramming systems design. This effort resulted in a new 
language, small and very much like Pascal. Its goals of 
efficient compilation, a simple compiler, and very small run-time 
support seem to have been met. 

The sequential operations of Modula rely very strongly on 
Pascal. The two notable areas of change from Pascal are 
additions: the module structure (an encapsulation mechanism 
similar to the Euclid module) and multiprogramming features 
(processes, interface modules, and signals). After contrasting 
individual features of the two languages, modules and 
multiprogramming are discussed in more detail. 

2. General Comparison of the Two languages 

2.1 Data Types 

Both Modula and Euclid offer a small set of standard types. 
Beth provide signed integers, Booleans, enumerations, and ordered 
sets of implementation-defined characters. In addition to signed 
integers, Euclid also provides unsigned integers and subranges of 
integers, the bounds of which are implementation defined. Both 
have deleted reals from Pascal's set of standard types. Euclid 
provides two additional standard simple types, "StorageUnit" and 
"AddressType", intended to be used in storage allocation. 

Euclid provides sets over any simple type (enumerated and 
subrange types, as well as the standard simple types). Modula 
provides something much simpler to implement: "bits”; the number 
of bits in a variable of type "bits" is intended to be one less 
than the word size of the target machine. Since the base type of 
Euclid's sets can be an arbitrary simple type, sets may have an 
arbitrary positive number of elements (up to some implementation 
limit), and the base type of the set may have a non-zerc lower 
bound. Thus in general the process of code generation for 

-37- 



EUCLIE AND MODOIA 

operations on ’’bits" is simpler than code generation for sets in 
Euclid. 

Both Modula and Euclid offer two structuring methods for 
their standard data types: arrays and records. (Modules provide 
somewhat more than simple data structuring and are discussed in 
Section 3.) Euclid offers a packed option for arrays and records, 
which Modula does not. 

Arrays may be explicitly multidimensional in Modula. Euclid 
provides only one-dimensional arrays, but these arrays may have 
arrays as their base type. Thus, the Modula declaration 

array 0:3, 2:6 of Boolean 

corresponds to the Euclid declaration 
•s 

array 0..3 of array 2..6 of Boolean 

Records in the two languages differ in that Modula prohibits 
the Pascal variant record, while Euclid extends it. Even the 
ncnvariant portions cf records are not identical, however. 
Euclid allows constants as fields of records, whereas Modula does 
not. 

Modula has no mechanism for parameterizing types, while 
Euclid does. The cost of providing parameterized types seems 
quite high. 

Euclid and Modula have somewhat different notions of type 
compatibility. Although [Wirth77a] does not spell out what type 
equality in Modula means, Modula has implemented a very 
straightforward rule: any two distinctly named types are 
unequal. Moreover, any anonymous record is unequal to any other 
record type. In order for a value to be assigned to a variable 
or a variable to be bound to an identifier, the types must be the 
same. In Euclid a type identifier is considered an abbreviation 
for its definition. Except for modules, after all such 
abbreviations have been removed, two types are the same if their 
definitions look the same. Any module type or type exported from 
a module is considered to be different from any other type. 
Except for a minor variation to accommodate parameterized types, 
in order for a value to be assigned to a variable or a variable 
to be bound to an identifier, the types must be the same. 

Euclid provides built-in operations on types as well as 
values of a type, while Modula provides built-in operations only 
on values. Both languages have a similar set of such operations, 
e.g., "inc" ("Succ" in Euclid), "dec" ("Pred"), "low" ("first"), 
"high" ("last"), "integer" ("Ord"), "char" ("Chr"), and "size". 
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2.2 Variable Declarations and Scopes 

Variable declarations in the two languages are quite similar. 
Declarations must appear before use, although Euclid also 
provides a forward option for mutually referencing declarations. 

Scoping methods in the two languages differ quite a bit. 
Modula conforms to the well-known Algol 60 formula: scopes 
coincide with blocks. Euclid*s open and closed scopes provide 
greater flexibility, with the consequent added expense to the 
compiler. Open scopes start following the keyword beginning a 
structured statement, and declarations may appear almost anywhere 
in a Euclid program. Statement sequences requiring declarations 
in Modula must be declared in a procedure or module before use. 

Variables of any type may be initialized in either language. 
In Euclid any initialization is part of the declaration 
statement, while in Modula an initialization part optionally 
fellows the declaration section of each block. 

Eoth languages further constrain Algol 60 inheritance rules 
for closed scopes with import and export lists (called use and 
define lists in Modula). For modules, both languages have 
similar rules for importing and exporting identifiers - only 
names on the corresponding list can go in or out. (Euclid 
excepts pervasive identifiers, and Modula excepts standard 
identifiers.) Modula goes further by disallowing access to any 
of the structural information about an exported identifier. For 
routines, which can only import identifiers, the two languages 
differ only in the case where the optional imports (use) list is 
omitted. Otherwise, anything not pervasive, a parameter, or 
explicitly imported is inaccessible. In Euclid, omitting the 
import list causes no identifiers to be imported; in Modula, 
normal Algol 60 inheritance rules apply (unlike for modules). 

2.3 Control Constructs 

For the most part, Euclid and Modula provide an identical set 
of control constructs. Both have deleted goto from their Pascal 
base, and both have slightly modified most of the other 
constructs. Both have terminating end brackets on control 
constructs. The if-then-else construct is the same in both 
languages. Both have added an elseif clause (elsif in Modula). 

The case statements in both languages are improvements over 
Pascal's version. Alternatives are explicitly delineated by 
terminating keywords, thus solving the parsing problem and 
improving readability. Modula uses begin and end to delimit case 
alternatives, while Euclid uses "=>" and end. Euclid requires 
that either each value of the case type be explicitly mentioned 
in exactly one alternative or an otherwise clause be used in the 
case statement. Euclid also provides a discriminating case that 
must be used in evaluating variant record parts. This feature is 
not needed in Modula, since variant records have been eliminated. 
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The iteration construct shows a minor but interesting 
difference in the two languages. Modula provides three 
statements for iteration, of which the first two are syntactic 
sugar for the third: while, repeat until, and loo£ with multiple 
(single-level) exits. Euclid has a loop statement that is 
equivalent to the loop of Modula, but somewhat more wordy. The 
Modula statement 

loop 
when B do Found := false e xit 
StatementSequence 
end 

requires an if rather than an exit when in Euclid: 

loop 
if B then 

Found := False 
exit 

end if 
StatesentSequence 
end loop 

Although admittedly the while and repeat untill statements are 
trivial to implement in terras of loop constructs, the addition of 
the two extra constructs seems an unnecessary concession to the 
Pascal tradition, especially given Modula's goal of a small, 
simple compiler. 

2.4 with Statements and Aliasing 

Modula follows Pascal in its use of the with statement. The 
with statement is used to select a variable cf a record type, so 
that within a statement sequence, the qualifiers of the variable 
need not be given, but rather just the field names. This is more 
than just syntactic shorthand for the typing ease of the 
programmer, since the compiler need only perform the necessary 
address calculations for this variable once. 

In their concern about aliasing, however, the designers of 
Euclid went somewhat further. Bather than provide simply a 
mechanism where one can ’'open” a specific variable of a 
particular record type and then refer to the field names without 
further qualification, Euclid provides a mechanism for renaming a 
variable at the beginning of a scope. This new variable name 
then exists for the duration of the scope. Address calculations 
can still be performed only once, at the beginning of the scope. 
Perhaps more importantly, more than one variable of the same 
record type can be effectively "open" simultaneously. Since the 
new names must be distinct from other names known in the 
enclosing scope, no naming conflicts can occur. Moreover, this 
renaming is not restricted to record variables. 
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2.5 Procedures and Functions 

The bodies of procedures and functions are similar in the two 
languages except for the differences already mentioned, such as 
name inheritance and scopes in Euclid not necessarily coinciding 
with blocks. Other major differences in routines are side 
effects in functions and parameter association 

Euclid functions may not have side effects. Modula does not 
prevent functions from exerting side effects, although functional 
side effects are discouraged as poor programming practice, and no 
explicit use is made of this in the defining Modula documents. 
Moreover, if the use list is omitted in Modula, the amount of 
information that must be maintained to ensure the absence of 
functional side effects can be excessive. 

It is illegal in Euclid to both import an identifier and 
access it via another name through the parameter list, as in: 

var C: signedlnt 
• • • 

procedure P (var A: signedlnt) = 
imports ^C) 
begin 
• • • 

end 
• • • 

P(C) 

Modula does not prohibit this type of aliasing. 

2.6 Constants 

In Modula all constants are scalar, with one exception: one 
may represent a constant of type "bits”. In Euclid, on the other 
hand, constants may be declared of any type. 

All constants in Modula are manifest: their values must be 
determinable at compile time. As a result, storage requirements 
for each module and procedure are known at compile time. In 
Euclid a constant need not be compile-time evaluable; rather, it 
is bound each time its scope is entered. The difference is thus 
a matter of binding time. 

2.7 Syntactic Issues 

In order to denote a statement sequence in Pascal, a begin 
block is required. Both Modula and Euclid provide simpler 
statement structures in general than Pascal. Both take the view 
that where one statement can go, many can. Both languages have a 
recursive definition of statement requiring no additional 
keywords, which is made possible by the terminating keyword on 
all control constructs. Thus, 
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while B do begin SI; S2 end 

in Pascal becomes 

while B do SI; S2 end 

or loop when not B exit SI; S2 eqd 

in Modula, and 

loop; exit when not E; Si; S2 end loop 

in Euclid. 

Another interesting improvement that Modula and Euclid share 
over most other languages, although not Pascal, is the use of 
semicolons as statement delimiters. Modula uses the semicolon as 
a separatpr rather than a terminator, in both record field lists 
and statements. However, since both record fields and statements 
may be empty, according to the Modula grammar, it does not matter 
whether one actually writes the semicolon after the final field 
or statement. Euclid goes even further in this respect: Euclid 
has a convention whereby the scanner for the language inserts 
semicolons for the parser*s and the error recovery mechanism*s 
benefit at the end of lines, depending on surrounding keywords. 
Thus the user need type very few semicolons. The principal 
problem with such a convention is that the user will very quickly 
get into the habit of not placing a semicolon anywhere. When a 
semicolon omission error does occur, the explanation that only 
some statements need semicolons, while ethers do not, will seem 
quite inconsistent. 

3 Modules 

Both the Modula and Euclid modules are descendants of the 
Simula 67 class [Dahl et al.68] that add information hiding 
capabilities to the encapsulation and data retention provided by 
the Simula 67 class. In contrast to the Euclid module, which is 
principally intended as a data abstraction mechanism (see the 
"Abstract Data Types in Euclid" paper), the Modula module is 
principally intended as a fence that establishes a static scope 
of identifiers whose visibility can be controlled. The 
distinction between the two notions of modules will be drawn more 
clearly after a discussion of data retention, visibility of 
identifiers, and storage allocation in Modula. 

3.1 Data Retention in Modula 

The Modula module allows local enclosed procedures to share 
retained protected data objects. A module comes into existence 
when the enclosing procedure (or process) is called, and vanishes 
when that procedure invocation is completed. Objects declared 
within a module are considered local to the enclosing procedure. 
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A module's data objects are thus retained after termination of 
any procedures enclosed within that module. 

3.2 Visibility of Identifiers in Modula 

Like Euclid, Modula provides for explicit control of the 
visibility of identifiers. The Modula module has use and define 
lists, directly analogous to Euclid's import and export lists. 
In both languages, if a module has no export (define) list, no 
identifiers are exported; if a module has no import (use) list, 
nothing is imported (except prevasive identifiers in Euclid and 
standard identifiers in Modula). 

Modula more severely limits access to variables and 
structural information of the enclosed types than does Euclid. 
Although it is questionable whether the ability in Euclid to 
assign to an exported variable is of significant value, Modula 
gees one step further and causes all exported variables to be 
read-only outside of the module. The intent is that variables 
belonging to a module should not actually be exported at all; 
making them exportable as read-only variables obviates declaring 
functions that simply yield a variable's value. The capability 
to export a variable can be simulated, however, by exporting an 
"Assign" routine that assigns values to that variable. 

A module can export only the name of a type in Modula. In 
particular, no field names are exported for records, and no index 
ranges or component types are exported for arrays. Thus, the 
environment external to a module has no way of knowing what the 
structure of an exported type is. 

3.3 Storage Allocation in Modula 

There are no unnamed begin blocks in Modula. The keywords 
begin and end are only used to delimit statement sequences that 
constitute the actions of procedures and processes, the 
initialization for a module, or the alternative actions in a case 
statement. When a local scope is required, the program and data 
parts must be previously written as a procedure definition and 
invoked at the desired point. Although no storage allocation 
need be done except at procedure or process invocation, this 
prevents any dynamic allocation of storage needed only 
temporarily. 

3.4 Euclid Modules versus Modula Modules 

The Modula module is intended to encapsulate such entities as 
a scanner in a compiler or a disk store manager, i.e., program 
segments of relatively large size where only a single instance 
exists. Multiple instances of a Euclid module, on the other 
hand, can be instantiated as needed. Herein lies the major 
difference between Euclid and Modula modules. 
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A Euclid module can, however, be represented as a Modula 
module declaration. Consider the following Euclid module 
definition (this example is ’’borrowed” from [Wirth77c] and 
translated into Euclid): 

mgdule M 
exports (P,Q) 
pervasive type T = ... 
var X,Y: T 
procedure P (var U: signedlnt) imports (X,Y) 

begin ... end P 
procedure Q (Var V; signedlnt) imports (X,Y) 

begin ... end Q 
• • a 

initially ... { initialization of instance } 
end module 

This is expressed in terms of a Modula module as follows: 

module M; 
define R, P, Q, S; 
type T = ... 
type R = record X,Y: T 
procedure P (var W: R; 

begin ... end P 
procedure Q (var W: R; 

begin ... end Q; 

end: 
var U: 

var V: 

integer); 

integer); 

procedure S (var W: R); 
begin ... (* initialization of instance 
end S; (* must be explicitly invoked 

for each instance *) 
end M; 

*) 

Note that the variables local to the Euclid module become record 
components of a new record type in the Modula module. 

The advantages of the Euclid module include (1) some 
syntactic convenience in specifying procedure invocation, (2) 
ease in naming procedures in that the same name may be used 
inside different Euclid modules, and (3) initialization not 
needing to be invoked explicitly (as in procedure "S” in the 
Modula example). These are not, however, major differences, 
especially in the Modula application area, where Wirth claims it 
seems natural to have unique names for all operators exported 
from modules [Wirth77c, p.69]. 

Although Modula modules were not intended as a data 
abstraction mechanism, the problems in using them as such are not 
inherent in the nature of modules, but rather due to other 
language decisions. In particular, the lack of parameterized 
types and the requirement that all array bounds be compile-time 
evaluable make Euclid’s parameterized module instantiations at 
best unwieldy to mirror in Modula. Consider the possible need 
for a parameterized queue module where the length is to be 
specified as a parameter supplied at instantiation. This is 

44- 



EUCLIt ANE MODULA 

provided in Euclid in a straightforward manner, whereas Modula 
could only provide for a limited number of cases, since each 
particular maximum length would require a separate complete 
module definition, with unique names for all operators. 

4 Multiprogramming 

Modula is explicitly designed to attack the domination of 
assembly language programming in systems for operating particular 
machines. Such systems require facilities for multiprogramming 
and for operating peripheral devices. There are no such features 
explicitly provided in Euclid, although both languages use 
modules to encapsulate machine dependencies. Modula provides 
processes. send and wait on signals as synchronization 
primitives, a form of monitors for mutual exclusion, and device 
processes. This section explains these features of Modula and 
indicates how they could be provided in Euclid. 

4. 1 Processes 

A process in Modula is a syntactic unit that must be defined 
and invoked at the outermost (main program) level. This means 
that a process cannot spawn son processes, although there can be 
multiple instances of a process. A process is given a fixed size 
memory, so if a recursive procedure is used in a process, a 
compiler directive must indicate the maximum depth of recursion. 
Accordingly, when the end of the main program is reached, all 
processes have been started, and an implicit guarantee can be 
made that storage overflow will not occur. The storage belonging 
tc a process that has terminated need not be reused since no 
further storage can be allocated. There is thus no need for a 
dynamic storage allocation scheme or for the management of sons 
that might outlive their fathers. 

A process can be in one of three states: ready, running, or 
waiting on a signal. All processes that are ready or running are 
linked into a ring. Scheduling will be discussed below. 

4.2 Mutual Exclusion 

Mutual exclusion is provided in Modula by a special kind of 
module called an interface module, which is distinguished by the 
keyword interface. Only one process can be actively executing 
within an interface module at any point in time, as with Hoare’s 
mcnitcrs [Hoare74]. 

There are two differences with Hoare's monitors. The first 
is that different interface modules can access common external 
variables, although such variables must be explicitly imported. 
The second (somewhat lesser) difference is that the internal data 
structures of an interface module can be exported, although this 
is strongly discouraged as a programming practice. Such exported 
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variables are read-only; any updating must be accomplished via 
interface module procedures. 

4.3 Synchronization 

Synchronization of processes is accomplished by signals, 
which correspond to Hoare's conditions. Signals syntactically 
appear as variables, but do not have values in the normal sense 
and are not assignable. They are operated on only by the system 
functions "wait", "send”, and "awaited". 

A signal has an associated gueue of waiting processes, 
"wait" causes a process to be inserted into the appropriate 
gueue. A rank can be specified, and waiting processes are 
ordered according to the rank. "send" allows the first process 
waiting in the queue (if any) to continue. When a process waits 
on or signals a condition, it steps out of the domain of mutual 
exclusion. "awaited" simply tests whether a particular gueue is 
nonempty. 

Mutual exclusion comes for free if a single processor is used 
without forced time-slicing. Processor switching only occurs at 
"send" and "wait" statements, and thus there is no implicit 
processor switching (that is, processor switching that occurs at 
arbitrary times without an explicit process directive). 
(Ccmplications due to I/O are discussed later.) "send" can cause 
a waiting process to gain control, while the sender simply goes 
into the ring of ready processes. "wait" causes the waiting 
process to be put on the appropriate queue, and a process from 
the ring to be scheduled. 

4.4 A Synchronization Example 

We present an example illustrating the synchronization 
facilities discussed above. This example shows two processes 
communicating through a circular buffer. The process "Producer" 
reads characters from an input device and stores them in the 
buffer. The process "Consumer" removes characters from the 
buffer and prints them on an output device. The system is non¬ 
terminating. The procedures "Read" and "Print" are assumed to be 
defined in the enclosing scope. 

module listinput; 
use Read, Print; 
interface module Bufferhandling; 

define Get, Put; 
const Nmax=256; 
var N, In, Out: integer; 

Nonempty, Nonfull: signal; 
Buf: array 1:Nmax of char; 
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(* Insert a character into the circular buffer *) 
procedure Put (Ch: char); 

begin 
if N=Nmax then wait(Nonfull) end; 
inc (N) ; 
Euf[In ] := Ch; 
In := (In mod Nmax)+1; 
send (Nonempty) 

end Put; 

(* Remove a character from the circular buffer *) 
procedure Get (var Ch: char); 

begin 
if N=0 then wait (Nonempty) end; 
dec(N) ; 
Ch := Buf[Out]; 
Out := (Out mod Nmax)+1; 
send (Nonfull) 

end Get; 
begin 

N := 0; 
In := 1; 
Out := 1 

end Buffer handling; 

(* Bead input characters and store in buffer *) 
process Producer; 

use Read, Put; 
var Ch: char; 
begin 

loop 
Read (Ch) ; 
Put(Ch) ; 

end 
end Producer; 

(* Remote characters from buffer and print *) 
process Consumer; 

use Get, Print; 
var Ch: char; 
begin 

loop 
Get(Ch) ; 
Print(Ch); 

end 
end Consumer; 

begin 
Producer; 
Consumer 

end Listinput; 
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4.5 PEP-11 Device Modules 

An implementation of Modula on a specific machine is intended 
to provide access to I/O devices. The documented implementation 
of Modula is for the PDP-11 [Wirth77c]. This section describes 
the device modules that control input and output on the PDP-11. 

Device drivers are written as processes within interface 
modules prefixed by the keyword device. A driver is initiated 
within the interface module body. An I/O operation is 
accomplished by an assignment to a device control register, 
followed by the statement doio. Device control registers are at 
fixed locations in memory, and these addresses are specified in 
the declaration of a register identifier. 

doio initiates the actual I/O operation and causes the driver 
to go to sleep waiting for an interrupt. An interrupt on the 
PDP-11 is associated with an address in memory called the 
interrupt vector. This address must be specified when the 

the interrupt occurs, an implicit 
the running process is suspended 

until it executes another doio or a 
is suspended and the previously 
control. A device process cannot 

"send" a signal to another device process. If a device process 
does "send" a signal, the receiver is marked ready and inserted 
into the ring, and the device process continues. The device 
process should not invalidate the signalled condition, but this 
is not checked. 

process is declared. When 
processor switch takes place: 
and the driver takes over 
"wait", at which time it 
interrupted process regains 

There are only single instances of device processes. Device 
processes can be in the states running, waiting for signal, or 
waiting for interrupt. They do not get into the ring of ready 
user processes. 

4.6 Multiprogramming in Euclid 

There are no mechanisms provided for multiprogramming in 
Euclid; whatever features are desired must be written in the 
language itself. We will consider the problem cf providing 
mechanisms in Euclid similar to those available in Modula. 

Since processes cannot be explicitly designated, a procedure 
"Spawn" must be written that will instantiate a procedure as a 
process. When given the machine address of a procedure, "Spawn" 
must provide it with stack space and link a descriptor for it 
into the ring. Since neither memory reguirements nor a 
descriptor are provided by the compiler, they would have to be 
explicitly passed as parameters. "Spawn" must have access to 
machine registers to set up the storage linkage. 

A Euclid module could play the role of a Modula interface 
module if we assume a single processor and switching only at the 
reguest of the running process (except for interrupts), as Modula 
does. To allow external routines to access the local data, all 
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identifiers defined in the module would be explicitly exported. 
Signals could be implemented as pointers, as in Modula, and 
"Send" and "Wait" procedures could be provided. Again, these 
would have to be in a machine dependent module as they must have 
access to processor status registers to provide processor 
switching. 

Providing multiprogramming facilities requires manipulation 
of run-time environments (providing stack space, linking 
procedure descriptors, storing process state vectors, etc.). In 
Euclid the required information is known only to the compiler. 
In order to program the facilities we have discussed, it is 
necessary to use machine code in machine-dependent modules to 
access all the hardware registers, and to have a complete 
knowledge of how a particular Euclid compiler implements the run¬ 
time environment. This means that the language (by itself) is 
net sufficient for writing operating system kernels. 

4.7 Evaluation of Multiprogramming Facilities 

The simple multiprogramming facilities of Modula are easy to 
understand and to implement; the Modula runtime support package 
is less than 200 bytes of code. However, its simplicity can lead 
tc problems. Consider the situation where two processes are 
active, one of which is doing a lot of data transfers, the other 
a lot of computing. To maximize use of machine resources we 
would prefer interrupts from completed data transfers to be 
quickly serviced by the I/O process so that it could initiate 
another transfer and thus keep the device busy. In Modula, the 
I/O process would be suspended when the first transfer started, 
the compute process would take over and be interrupted when the 
transfer was complete, and then the compute process would be 
allowed to continue after the driver had handled the interrupt. 
Because there is no processor pre-emption, the I/O process could 
wait for a long time before being rescheduled to start the next 
I/O operation. This defect is not critical in an experimental 
system like Modula because processes could periodically issue 
explicit "waif's to allow such processor switching. However, 
this relies on the honorable intentions of all processes. 

Euclid does not have any multiprogramming facilities, 
although those of Modula could be provided as discussed above. 
Additional parameters would be required for processes, and the 

would have 
the entire 

in this area 
and simple 

to have 
runtime 
is the 
set of 

programmer of the machine dependent module 
knowledge of the compiler's model of 
environment. The major advantage of Modula 
provision of an extremely efficient 
multiprogramming facilities as part of the language itself. The 
major advantage of Euclid is the flexibility of allowing 
different multiprogramming facilities to be provided, whereas 
Modula is locked into a particular multiprogramming methodology. 
The advantage here only arises because of access to machine code 
from Euclid - no useful facilities or primitives are provided in 
the language. 
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5 Summary 

Although both Euclid and Modula are based on Pascal and 
intended for writing system software, the further goals of the 
languages resulted in two rather different languages. In 
general, Modula is a much smaller and simpler language than 
Euclid. Modula has perhaps more specific goals: it is intended 
for multiprogramming, especially on minicomputers. Euclid is a 
much more complex language, due in part to its more encompassing 
goals and in particular to its goal of verifiability. More 
mechanism is included in the language so that more errors can be 
caught by the compiler and so that more of the information needed 
for verification is explicit in the program text. Quite often, 
where Modula deleted or restricted a feature in its Pascal base, 
Euclid extended it. Thus the task of designing and implementing 
a reliable compiler for Modula seems quite simple compared to the 
effort required for a reliable Euclid compiler. 

It seems almost simplistic to state that we would choose to 
use each language in applications for which the respective 
language was intended. This statement, however, has some subtle 
conseguences. Where multiprogramming on minis or verification is 
net the overwhelming concern, the question then becomes which 
language would provide greater confidence that a program written 
in it would indeed do the job at hand. 

One requires more than faith that an implementation is 
correct according to its specification. Modula provides a great 
amount of faith precisely because of the size and simplicity of 
the language and its compiler. Assuming there existed a reliable 
Euclid compiler, Euclid, neither small nor simple, provides 
specific features such as type safety and aliasing restrictions 
that serve as a firm basis for rigorously verifying the 
correctness of a program. Moreover, even for programs not 
intended to be formally verified, the philosophy embodied in 
Euclid increases the programmer's confidence that the program is 
intuitively correct, and thus meets its specification. 
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